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1. Introduction

One goal of software engineering is to find efficient tools which produce from a program

quantitative life cycle information which has a well-understood interpretation. Program mutation

(14, 2, l3jis such a tool. 'ts goal is to provide a measure of how well data T has tested the functional

correctness of program P.

in program mutation a set of alternative programs M.M 2.... Mm. called mutants, are constructed

from P and run against T. Ideally, each M, is functionally different from P -- each mutant represent, a

potential error in P. Assuming P runs acceptably on T. M, failing on T indicates that P does not

contain the error represented by M,. Thus. a quantitative measure of how well P has been tested bh .

modulo the represented pctential errors, is given by the percentage of failing mutants.

There have been three experimental program mutation systems built, to for testing Fortran

programs [6. 5), called FMS. I and FMS.2. and one for testing Cobol programs [2. I]. called CMS. I.

The goal of each system has been to conduct experiments aimed at proiding interpretations of the

mutant failure percentage -- that is. determining exactly what types of common programming errors

can cannot be detected via mutations and comparing the relative strength of program mutation

testing to the other contemporary testing methods such as symbolic execution [If. 10. 16] and

coverage measures [19, 18, 23]. The results of these experiments have been reported in [22. 2. 7. I. ,s]

It is noted that on these sstems programs having lengths of up to 1000 statements have been test.d

under experimental conditions. [15) represents the most comprehensive test by program mutation !o

date.

All three mutation systems have approached the problem of constructing mutants by detining a set

of from 25 to 30 mutant operators. A mutant operator is a simple syntactic or semantii program

transformation such as changing a particular relational operator to one of the fise other relational

changing a particular variable reference name to be one of the program's other named sariables of

compatible type. All three mutation systems have implemented onl% fir.t order mutations which

come from a single application of a mutant operator on the program P Anal ,is has shokn that the

number of mutants generated by these systems is on the order of N2 where N is the number of

statements in p 2 [22. 8].

The method of mutant operations was chosen because it is conceptuall. simple and eas\ to

2
In section 3 it diul be explained ho-, the compilation of N2 

mutants is a\oided -- onl. the program P need be compiled

I,
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implement. However, using general program transformations introduces a new problem -- the

generation of mutants which are functionally equivalent to the given program P. These equivalent

mutants are a nuisance since they add no power to the mutant test and thus must be diligently

accounted for during experiments. Furthermore, during some experiments as many as 101- of the

mutants have turned out to be equivalent. A method to automatically detect some types of equi\ alent

mutants, based on compiler optimization techniques, has been designed but it has \et to be

implemented [4].

The experiments run on these three prototype program mutation systems have shown that the

method will uncover virtually all errors detected by contemporary testing methods and ha\e further

shown that program mutation has the potential to detect some errors which are overlooked b% all

other methods. However. due to the relatively large number of mutants generated it remains to be

seen whether or not the method can be implemented efficiently enough to be put into a production

environment. This is further aggravated by the above equivalent mutants problem.

2. Potential Speed-Up Methods

All current program mutation systems execute mutants in their entirety on test data. For test data

T consisting of n test cases 11.2.....In. the program P is first executed to produce corresponding output

O,.02..On. In functional notation. 0, = P(L,). A mutant M, is said to fail if for an\ test case i. either

M, has a run-time exception or M,(I) is different from P(I,). The main loop of current mutation

systems is illustrated in figure 2-1. Details will be given in section 3.

In this report we will discuss how the mutation test can potentially be more efficientl. implemented

by overviewing the design of a new prototype program mutation system which radicall\ differs from

all previous systems. Rather than tackle a new language. we will concentrate on performing program
mutation on Fortran programs. The following four potential speed-up factors %ill he incorporated.

2.1. Distributed Computation

Figure 2-I illustrates the sequential nature of current program mutation systems Houever. there is

nothing inherently sequential in the method. Indeed. the nature of mutation anak sis in x hich several

mutants are independently run against test data suggests that the method is a "natural" for distributed

computing. For a distributed system with r processors. one can conceive of routing mutants and test

data to free processors with a potential speed-up factor of r. The method is particularly suited to local

area networks of personal machines [20].

The detailed design of a prototype distributed program mutation system should focus on the

communication issues related to realizing as close as possible the potential r speed-up factor afforded
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by distributed computing. An overview of the system design and an implementation strateg) will be

given in sections 4 and 5.

2.2. Automatically Detecting Equivalent Mutants

Figure 2-1 illustrates the computational waste of equivalent mutants. Assume that M is not

equivalent to P and that Mj will fail on some I,. As soon as M) fails it is never again executed.

However, if M, is equivalent to P then M, will be executed on each 1, since M, can never fail'.

In a production system virtually all equivalent mutants must be automatically detected for reasons

other than efficiency: if equivalent mutants are not accounted for, then the interpretation of the

mutant failure percentage can be misleading. Furthermore. it has been observed that manually

detecting equivalent mutants can require large amounts of human effort [2. 15]. and manual

detection of equivalent mutants is an error-prone human activity which again can lead to

misinterpretation of the mutant failure percentage.

The design of our prototype distributed system will incorporate the detection method designed in

[4]. To experiment on how well the method works and to improve the method one would use a data

base of programs with known equivalent mutants as has been collected in [9, 7]. It has been

estimated that as many as 95c of the equivalent mutants can be detected automatically [ I. 8]. Aside

from improving this figure, experiments could suggest strategies to help manually detect the

remaining small number of equivalent mutants.

2.3. Partial Mutant Execution

As stated above and illustrated in figure 2-1. the current mutation systems execute mutants in their

entirety on test data. In the design of the prototype distributed system we will incorporate an

execution time saving feature of commencing mutant execution at the point of mutation.

The method can best be illustrated through a straight line program. Assume P is an N statement

straight line program with statements SI.$2.. . ..SN. Let T be a test case for P with input I and output

0. Let D represent all data variables accessed by P and denote by Di the state of D after S, has been

executed. Figure 2-2 illustrates this notation. Then if mutant M, affects statement Sk but doesn't

affect statements S1.S2 . .S-1 we can, without loss of generality. begin the execution of M, with data

state Dk-1 at mutated statement Sk.

The major obstacle to be overcome in implementing this speed-up method lies in how to store and

3An equtalent M, could tait due to a runtime exception Experience indicates that this is extremel rare
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retrieve P's intermediate data values. The straight-line program example illustrates some issues and

ideas to explore in designing the prototype distributed system. Clearly storing D0,..,DN would work

but would require a factor of N additional storage. However, it is easy to see that if the values

computed by the S's (rather than the D's) are stored in a reversed linked-list fashion, then Di can be

constructed without executing S1 ,S 2 ,....Si. This approach can be extended to tree and acyclic graph

programs, but breaks down for arbitrary program structures.

It has been shown that a large variety of program structures, usually restricted to intraprocedure

analysis, can be reduced to the above three forms [17]. In the prototype distributed program

mutation system we will explore using the above techniques at the node level of the reduced flow

graph representation of Fortran subroutines. We will also need to construct and use the procedure

call graph as defined in (17]. It might be necessary to commence mutant execution in the calling

ro': it for test cases which cause subroutines to be called many times.

There is another saving of execution time that can be realized with the above method of

commencing mutant execution at the point of mutation. Referring again to figure 2-2, assume

mutant M, affects statement Sk but doesn't affect any other statements. Then we not only can begin

execution of Mj at mutated statement Si but we can, without loss of generality, terminate the

execution of M, after executing mutated Sk providing the Dk data state of the mutant matches the Dk

data state of the program P - Mi cannot fail. The case where the data states are unequal will be

discussed in the next subsection.

In the detailed design of the distributed mutation system, one should instrument measurement

techniques in an effort to estimate how much of a saving is being realized due to partial mutant

execution.

2.4. A "Weak" Mutation Option

It was seen above that mutants can be terminated at the point of mutation provided the mutant's

data state matches the program's at that point. If they don't match, however, the mutant cannot be

terminated and marked as failing since at some later point in its execution its data state could return

to match the program's.

It would be unwise to continuously monitor a mutant's data state to see if it has returned to match

'in the current program mutation systems most, but not all. of the generated mutants have this propert%
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the program since we intuitively feel that such returns are rare.5 Marking a mutant as failing it it

doesn't match the program at the point of mutation will be called weak program mutation. Tsko

things are clear about weak program mutation: 1) it can be implemented much more efficientl. than

program mutation, and 2) it cannot give more information on the correctness of a program than

program mutation. What is not clear is how much weaker is weak program mutation than program

mutation.

A prototype distributed program mutation system should have weak program mutation as an

option, This would allow 'ne to conduct experiments on the above question. The experiments ,%ould

be of a "beat the system" nature [7) in %khich a subject takes programs with knoun errors and tries to

deselor test data on ishich the program doesn't fail but on which all mutants of the program fail.

Initially. the same programs which have been used in beat the system experiments on program

mutation [9] should be used for beat the system experiments on weak program mutation. This %ill

allow a comparison of pregram mutation and weak program mutation on known results. Later. the

impro'ed efficiency of the prototype distributed mutation system would allow one to conduct

experiments on programs of much larger size

3. Design Overview of Current Mutation Systems

The three existing program mutation systems all have the same basic design (6. 5]. There are Six

major modules:

I. A parser -- the program to be tested is parsed into an internal form which is suitable for

program mutation.

2. An Interpreter -- executes internal form representations of programs and mutants

Detects various run-time failure exceptions.

3. A Test Case Manap,er -- controls execution of the program on the test data and record,
the output of the program.

4. A Mutant Generater -- applies the mutant operators to the program to generate mutant

descriptors which indicate what changes to the internal form constitute a mutation

5. A Mutant Manager -- uses the mutant descriptions to create mutants b. altering the

internal form, controls execution of the mutants on the test data. and maintain, tables

which indicate the failure status of mutants.

6. A Report Generater -- creates a printable summary of the testing run

From the descriptions of these modules it can be seen that there are four major data structures in

3fntuitively. if a mutant will return to match the program then it w.l, do so ouickl% -- %Wtw, the next fcy. statement, Thi, ft,
in nicel, %ith the reduced flow gr3ph node-level method o, partial mutant execution outh . c,

a .b



current mutation systems:

I. The internal form representation of the program,

2. The test cases and the program's output on them,

3. The mutant descriptors, and

4. The mutant status tables.

A testing run on current mutation systems can be broken down into three relati\el. independent

phases:

I. Phase I -- The program is parsed, the program is executed on the test data. and the
mutant descriptors are generated.

2 Phase 2 -- The mutants are executed on the test data.

3. Phase 3 -- The repcrt is generated.

Figure 3-1 summarizes the design and how testing runs are done on the current program mutation

systems in terms of the components described above. Note that in testing a program P. the sy stems

allow the test data to be augmented without redoing what has been previously done in phase I

Furthermore, the user has the option of applying the mutant operators incrementally from run to run

rather than dealing with all mutants from the outset. There are three places indicated in figure 3-I

where a testing run may stirt:

(A) Star, point for the first testing run.

(B) Start point for subsequent runs involving new test data.
and possibly the application of more mutant operators.

(C) Start point for subsequent runs involving no new
test data but applying more mutant operators.

4. Design Overview of the Prototype Distributed Mutation System

The prototype distribu'ed mutation system will still have the three phases of current mutation

systems. Implementing the ideas of section 2 will require some new components as %ell as major

design overhauls to some existing components. There will be two new components:

I. A Program Flow Graph - this data structure will indicate where and ho%% partial mutant
execution can be dene. It will also indicate the basic blocks of the program.

2. An Equivalence Tester -- this module will use the basic block information of the
program flow graph to mark mutant descriptors as equivalent.

Five components of existing mutation systems need substantial revisions. They are-

I. The Parser - the program flow graph will be generated by the parer.

2. The Internal Form -- the internal form representation of the program %%ill no% include
the program flow g'aph.
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3. The Test Cast Manager -- in order to do partial mutant execution it will be necessary for
the test case manager to record data state information on the program at the points
indicated by the flow graph.

4. The Test Cases -- n addition to the input routput information, the test cases will now
contain the intermediate information necessary for partial mutant execution.

5 The Mutant Manager -- the mutant manager will now control partial execution of
mutants, both in starting mutant execution at the point of mutation and in ending
mutant execution immediately thereafter in the case of weak program mutation. In
addition, the mutant manager will control the parallel execution of mutants. The
distributed aspects of the mutant manager will be elaborated below.

The phase I design ove-view of the prototype distributed system is illustrated in figure 4-1. Note

that %e could have "parallelized' phase I to take advantage of a distributed system. We choose to

avoid the complexities of doing so because the execution time spent in phase I is insignificant with

respect to the execution ->-ie spent in phase 2.

To describe the distributed aspects of the prototype distributed system, we will use the standard

parallel processing abstraction terms of process, message passing, father process, and son process. in

order to describe the design structure independently of any particular system architecture. An

implementation strategy will be described in the next section.

The mutant manager will be a father process capable of creating, managing, and communicating

with an arbitrary number of identical son processes called mutant executers. The mutant manager

will exist for the duration of phase 2 but the mutant executers may come and go. The mutant

executers operate independently of each other, don't communicate with each other, and don't know

or care about the existance of other mutant executers. The only communications are between the

mutant manager and the mutant executers. Figure 4-2 illustrates this process structure

Upon creation, a mutant executer will contain code for communicating with the mutant manager.

the internal form representation of the program, and the interpreter. These components remain

resident for the entire existance of a mutant executer. After creation, the mutant manager passes ,o

the mutant executer one test case which will be resident in the executer for quite some time This is

done for two reasons: the test case can constitute much data and we uish to minimize

communications, and we want the mutant executer to "selt-optimize" itself for executing a particular

test case and this will be a time consuming activity.

After these two steps the mutant executer is ready to create and execute mutants For simplicity.

this will be done one mutant at a time -- the mutant manager will pass a mutant descriptor to the

mutant executer and then wait for a message indicating whether or not the mutant has failed Note

that all communication between the manage, and the executer ifl! be of a

*;hook -
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command-acknowledgement nature. In addition, the manager can also expect messages from the

executer such as '1 am about to cease to exist'.

5. An Implementation Strategy

The implementation of the prototype distributed mutation system can be done in three successive

stages, each building on the former with the first stage building on the current FMS.2 program

mutation system. The completion of stage one would permit the performance of the experiments on

weak program mutation which were outlined in section 2.

5.1. Stage I

During this stage FMS.2 would be modified to implement the equivalence tester and partial mutant

execution. The necessary changes were summarized in section 4. There will be no introduction of

parallelism during stage I.

5.2. Stage 2

During this stage the mutant manager, the mutant executer, and the communication mechanism

between them would be built and the system would evolve toward being of a distributive nature.

Depending on the available facilities, it might not be necessary to actually use or simulate distributed

hardware during this stage. For example, a DEC-2060 running the TOPS-20 operating system [ 12] is

particularly suited for building t.',, zype o', distributed system which we have described since it

supports a tree-structured hirrarc-. if ivynchronous processes, and interprocess message passing.

Thus ir stage 2 it is recommended that the prototype distributed mutation system be built on a single

processor machine under an ope.tating system which supports in software a realistic version of

distributed computation.

5.3. Stage 3

During this stage any artificiality in the distributed mutation system can be removed by converting

it to run on a multiprocessor system. There are several such systems currently available. For

example, at Yale there are two DEC-2060's connected via an Ethernet-like (20] local area network

called Chaosnet [21]. Building the prototype mutation system on this network would allow an

examination of the communication issues involved in running mutant executers on different

processors.

Unfortunately, for the above network of two DEC-2060's, the mutant manager would be on the

same machine as one of the mutant executers. The artificiality that this imposes will be minimal since
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the mutant manager will be dormant most of the time. However, even this small degree of artificiality

can be avoided if one has available a local area network consisting of many powerful personal

computers such as the recently announced Apollo machine [3].
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